人臉識(shí)別基礎(chǔ)知識(shí)
日期:2021-10-19 10:15:29 / 人氣:9372
人臉識(shí)別(FaceRecognition,F(xiàn)R)是一種基于人的臉部特征信息進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù)。用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測(cè)和跟蹤人臉,進(jìn)而對(duì)檢測(cè)到的人臉進(jìn)行臉部識(shí)別的一系列相關(guān)技術(shù),通常也叫做人像識(shí)別、面部識(shí)別。
人臉識(shí)別系統(tǒng)的研究始于20世紀(jì)60年代,80年代后隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級(jí)的應(yīng)用階段則在90年后期;近幾年隨著以深度學(xué)習(xí)為主的人工智能技術(shù)進(jìn)步,人臉識(shí)別技術(shù)得到了迅猛的發(fā)展。“人臉識(shí)別系統(tǒng)”集成了人工智能、機(jī)器識(shí)別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),是綜合性比較強(qiáng)的系統(tǒng)工程技術(shù)。
人臉識(shí)別系統(tǒng)通常包括幾個(gè)過(guò)程:人臉圖像采集及檢測(cè)、關(guān)鍵點(diǎn)提取、人臉規(guī)整(圖像處理)、人臉特征提取和人臉識(shí)別比對(duì)。
人臉圖像采集:不同的人臉圖像都能通過(guò)攝像鏡頭采集下來(lái),比如靜態(tài)圖像、動(dòng)態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會(huì)自動(dòng)搜索并拍攝用戶的人臉圖像。
人臉檢測(cè):人臉檢測(cè)在實(shí)際中主要用于人臉識(shí)別的預(yù)處理,即在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小。
關(guān)鍵點(diǎn)提取(特征提取):人臉識(shí)別系統(tǒng)可使用的特征通常分為視覺(jué)特征、像素統(tǒng)計(jì)特征、人臉圖像變換系數(shù)特征、人臉圖像代數(shù)特征等。人臉特征提取就是針對(duì)人臉的某些特征進(jìn)行的。人臉特征提取,也稱人臉表征,它是對(duì)人臉進(jìn)行特征建模的過(guò)程。人臉特征提取的方法歸納起來(lái)分為兩大類:一種是基于知識(shí)的表征方法;另外一種是基于代數(shù)特征或統(tǒng)計(jì)學(xué)習(xí)的表征方法。
人臉規(guī)整(預(yù)處理):對(duì)于人臉的圖像預(yù)處理是基于人臉檢測(cè)結(jié)果,對(duì)圖像進(jìn)行處理并最終服務(wù)于特征提取的過(guò)程。系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機(jī)干擾,往往不能直接使用,必須在圖像處理的早期階段對(duì)它進(jìn)行灰度校正、噪聲過(guò)濾等圖像預(yù)處理。對(duì)于人臉圖像而言,其預(yù)處理過(guò)程主要包括人臉圖像的光線補(bǔ)償、灰度變換、直方圖均衡化、歸一化、幾何校正、濾波以及銳化等。
人臉識(shí)別比對(duì)(匹配與識(shí)別):提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫(kù)中存儲(chǔ)的特征模板進(jìn)行搜索匹配,通過(guò)設(shè)定一個(gè)閾值,當(dāng)相似度超過(guò)這一閾值,則把匹配得到的結(jié)果輸出。人臉識(shí)別就是將待識(shí)別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對(duì)人臉的身份信息進(jìn)行判斷??煞譃?:1、1:N、屬性識(shí)別。其中1:1是將2張人臉對(duì)應(yīng)的特征值向量進(jìn)行比對(duì),1:N是將1張人臉照片的特征值向量和另外N張人臉對(duì)應(yīng)的特征值向量進(jìn)行比對(duì),輸出相似度高或者相似度排名前X的人臉。
人臉識(shí)別系統(tǒng)的研究始于20世紀(jì)60年代,80年代后隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級(jí)的應(yīng)用階段則在90年后期;近幾年隨著以深度學(xué)習(xí)為主的人工智能技術(shù)進(jìn)步,人臉識(shí)別技術(shù)得到了迅猛的發(fā)展。“人臉識(shí)別系統(tǒng)”集成了人工智能、機(jī)器識(shí)別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),是綜合性比較強(qiáng)的系統(tǒng)工程技術(shù)。
人臉識(shí)別系統(tǒng)通常包括幾個(gè)過(guò)程:人臉圖像采集及檢測(cè)、關(guān)鍵點(diǎn)提取、人臉規(guī)整(圖像處理)、人臉特征提取和人臉識(shí)別比對(duì)。
人臉圖像采集:不同的人臉圖像都能通過(guò)攝像鏡頭采集下來(lái),比如靜態(tài)圖像、動(dòng)態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會(huì)自動(dòng)搜索并拍攝用戶的人臉圖像。
人臉檢測(cè):人臉檢測(cè)在實(shí)際中主要用于人臉識(shí)別的預(yù)處理,即在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小。
關(guān)鍵點(diǎn)提取(特征提取):人臉識(shí)別系統(tǒng)可使用的特征通常分為視覺(jué)特征、像素統(tǒng)計(jì)特征、人臉圖像變換系數(shù)特征、人臉圖像代數(shù)特征等。人臉特征提取就是針對(duì)人臉的某些特征進(jìn)行的。人臉特征提取,也稱人臉表征,它是對(duì)人臉進(jìn)行特征建模的過(guò)程。人臉特征提取的方法歸納起來(lái)分為兩大類:一種是基于知識(shí)的表征方法;另外一種是基于代數(shù)特征或統(tǒng)計(jì)學(xué)習(xí)的表征方法。
人臉規(guī)整(預(yù)處理):對(duì)于人臉的圖像預(yù)處理是基于人臉檢測(cè)結(jié)果,對(duì)圖像進(jìn)行處理并最終服務(wù)于特征提取的過(guò)程。系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機(jī)干擾,往往不能直接使用,必須在圖像處理的早期階段對(duì)它進(jìn)行灰度校正、噪聲過(guò)濾等圖像預(yù)處理。對(duì)于人臉圖像而言,其預(yù)處理過(guò)程主要包括人臉圖像的光線補(bǔ)償、灰度變換、直方圖均衡化、歸一化、幾何校正、濾波以及銳化等。
人臉識(shí)別比對(duì)(匹配與識(shí)別):提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫(kù)中存儲(chǔ)的特征模板進(jìn)行搜索匹配,通過(guò)設(shè)定一個(gè)閾值,當(dāng)相似度超過(guò)這一閾值,則把匹配得到的結(jié)果輸出。人臉識(shí)別就是將待識(shí)別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對(duì)人臉的身份信息進(jìn)行判斷??煞譃?:1、1:N、屬性識(shí)別。其中1:1是將2張人臉對(duì)應(yīng)的特征值向量進(jìn)行比對(duì),1:N是將1張人臉照片的特征值向量和另外N張人臉對(duì)應(yīng)的特征值向量進(jìn)行比對(duì),輸出相似度高或者相似度排名前X的人臉。
匯通科技的智能出入管理系統(tǒng),集成訪客系統(tǒng)、訪客車輛管理、入廠安全培訓(xùn)、貨車管控等等功能模塊,按需購(gòu)買,支持定制開(kāi)發(fā),優(yōu)化了管理流程,操作簡(jiǎn)便,易于掌握,提高了安防工作效率。
作者:匯通科技